Major role of excipients in the draft guideline ICH M09

Susana Almeida

salmeida@medicinesforeurope.com

Quality and Clinical Development Director
This presentation represents the author’s personal opinion and does not necessarily represent the policy or recommendations of IGBA or Medicines for Europe.
Current scenario

<table>
<thead>
<tr>
<th>Region</th>
<th>Biowaiver Guideline</th>
</tr>
</thead>
</table>
| EU | Guideline on the investigation of bioequivalence
(CPMP/QWP/EWP/1401/98 Rev. 1, 2010) |
| US | Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System Guidance for Industry (2017) |
| Japan | BCS based biowaivers currently not foreseen |
| Canada | Guidance Document: Biopharmaceutics Classification System Based Biowaiver (2014) |
Competing Standards: a tangled mess
(Monitoring, Reporting, Verification)
2001/83 (as amended)

3b. Excipient: Any constituent of a medicinal product other than the active substance and the packaging material.

Active or inactive?...
Phenytoin (1968-69)

- Outbreak of anticonvulsant intoxication in epileptic patients
- All affected patients were taking one brand of phenytoin.
- 87% ↑↑ blood phenytoin levels (above the therapeutic range)
- Reduction of phenytoin dose relieved the intoxication in all patients.

- Culprit: when CaSO4 was replaced with lactose, absorption increased

- The dissolution profile of CaSO4 containing capsules showed a reduced dissolution rate

Scientific Rationale
How can excipients impact absorption?

- **Dosage form**
 - Release rate/amount of drug in solution
 - Altered disintegration time
 - Altered dissolution rate
 - Altered local pH
 - Complexation (excipient-drug complexes)

- **Gastric emptying**
 - Transit and luminal volumes
 - Faster gastric emptying
 - Increased luminal volume (osmotic effect)
 - Altered small intestinal transit time

- **Intestinal transit**
 - Altered effective permeability
 - Damage to intestinal surface/tight junction modulation
 - Inhibition of efflux
 - Inhibition or enhancement of active uptake

- **Drug in enterocyte**
 - Altered metabolism
 - Inhibition of gut wall metabolism

Source: Talia Flanagan Excipient effects on absorption; Summary of initial assessment. M9 EWG
Some examples
1. Release rate/amount of drug in solution

- Altered disintegration time
- Altered dissolution rate
- Altered local pH
- Complexation (excipient-drug complexes)
HPMC, Magnesium stearate

- Lower absorption of model BCS Class III drugs (cimetidine, acyclovir) in formulations containing HPMC or magnesium stearate

(in vivo data; two drugs only)

Table 2
Prototype Study 2 Test Formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Formula</th>
<th>Excipient</th>
<th>% Dissolved in 15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>CimTest-A-10 mg</td>
<td>Cimetidine (100 mg); microcrystalline cellulose (300 mg); sodium lauryl sulfate (25 mg)</td>
<td>HPMC: 10 mg (2.3%)</td>
<td>92.9 ± 3.3</td>
</tr>
<tr>
<td>CimTest-A-20 mg</td>
<td>Cimetidine (100 mg); pregelatinized starch (100 mg); croscarmellose sodium (60 mg)</td>
<td>HPMC: 20 mg (4.5%)</td>
<td>89.5 ± 2.8</td>
</tr>
<tr>
<td>CimTest-A-45 mg</td>
<td></td>
<td>HPMC: 45 mg (9.5%)</td>
<td>38.6 ± 8.1</td>
</tr>
<tr>
<td>CimTest-A-75 mg</td>
<td></td>
<td>HPMC: 75 mg (15%)</td>
<td>23.5 ± 3.6</td>
</tr>
<tr>
<td>CimTest-B-20 mg</td>
<td>Cimetidine (100 mg); pregelatinized starch (100 mg); croscarmellose sodium (60 mg)</td>
<td>Mag st: 20 mg (7.1%)</td>
<td>94.5 ± 2.4</td>
</tr>
<tr>
<td>CimTest-B-40 mg</td>
<td></td>
<td>Mag st: 40 mg (13.3%)</td>
<td>60.2 ± 3.2</td>
</tr>
<tr>
<td>CimTest-B-40 mg-L</td>
<td>Mag st: 40 mg (8%); + Lactose: 200 mg</td>
<td></td>
<td>60.0 ± 5.0</td>
</tr>
<tr>
<td>CimTest-B-40 mg-T</td>
<td>Mag st: 40 mg (13.3%); turbular mixer</td>
<td></td>
<td>29.0 ± 5.1</td>
</tr>
</tbody>
</table>

HPMC: hydroxypropyl methylcellulose

Are they candidates for a biowaiver in the first place?

Table 1
Study 1A and 1B Test Formulations: Compositions and In Vitro Dissolution

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Excipient 1</th>
<th>Excipient 2</th>
<th>Excipient 3</th>
<th>% Dissolved in 15 min^\text{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH 1.2</td>
</tr>
<tr>
<td>CimTest-1</td>
<td>Microcrystalline cellulose (300 mg)</td>
<td>Hydroxypropyl methylcellulose (45 mg)</td>
<td>Sodium lauryl sulfate (25 mg)</td>
<td>106 ± 2.0</td>
</tr>
<tr>
<td>CimTest-2</td>
<td>Corn starch (450 mg)</td>
<td>Sodium starch glycolate (100 mg)</td>
<td>Colloidal silicon dioxide (20 mg)</td>
<td>104 ± 1.5</td>
</tr>
<tr>
<td>CimTest-3</td>
<td>Dibasic calcium phosphate (300 mg)</td>
<td>Sodium lauryl sulfate (25 mg)</td>
<td>Crospovidone (50 mg)</td>
<td>95.3 ± 2.8</td>
</tr>
<tr>
<td>AcyTest-1</td>
<td>Microcrystalline cellulose (300 mg)</td>
<td>Hydroxypropyl methylcellulose (45 mg)</td>
<td>Sodium lauryl sulfate (25 mg)</td>
<td>83.9 ± 2.7</td>
</tr>
<tr>
<td>AcyTest-2</td>
<td>Lactose (450 mg)</td>
<td>Povidone (35 mg)</td>
<td>Stearic acid (40 mg)</td>
<td>99.7 ± 0.6</td>
</tr>
<tr>
<td>AcyTest-3</td>
<td>Pregelatinized starch (100 mg)</td>
<td>Croscarmellose sodium (60 mg)</td>
<td>Magnesium stearate (40 mg)</td>
<td>75.6 ± 2.9</td>
</tr>
</tbody>
</table>

Capsules for study 1A included 100 mg of cimetidine. Capsules for study 1B included 100 mg of acyclovir. All capsules contained three excipients. Study 1A and 1B collectively evaluated 14 excipients across six test capsule formulations. Formulation CimTest-1 and AcyTest-1 employed the same excipients. Sodium lauryl sulfate was included in formulations CimTest-1, CimTest-3, and AcyTest-1. In the in vivo study of each formulation, two capsules were administered as a single dose of 200 mg of drug.

^\text{a} Mean ± SEM.

To qualify for a BCS-based biowaiver for BCS Class III drug substances both the test product and reference product should display very rapid (≥85 for the mean percent dissolved in ≤15 minutes) in vitro dissolution characteristics under the defined conditions.
• **Sodium bicarbonate**: shortened the disintegration time of capsules containing water-insoluble ingredients (dogs, radiological study)

• Ibuprofen, pH regulators (aluminum hydroxide, calcium carbonate, tartaric acid)
 • Ibuprofen absorption much faster with sodium bicarbonate than with aluminum hydroxide capsules
 • Rank order correlation between dissolution parameters and the in vivo bioavailability
 • due to enhanced in vivo disintegration of the capsule, enhanced in vivo dissolution of the drug and enhanced gastric emptying rate

Hannula AM, Marvola M, Rajamaeki M, Ojantakanen S. Effects of pH regulators used as additives on the bioavailability of ibuprofen from hard gelatin capsules. Eur J Drug Metab Pharmacokinet. 1991;Spec No 3:221-7

Bicarbonate

- Sodium bicarbonate: shortened the disintegration time of capsules containing water-insoluble ingredients (dogs, radiological study)

- Ibuprofen, pH regulators (aluminum hydroxide, calcium carbonate, tartaric acid)
 - Ibuprofen absorption was much slower with aluminum hydroxide capsules than with sodium bicarbonate capsules of the previous study
 - A rank order correlation between dissolution parameters and the in vivo bioavailability
 - due to enhanced in vivo disintegration of the capsule, enhanced in vivo dissolution of the drug and enhanced gastric emptying rate

Hannula AM, Marvola M, Rajamaeki M, Ojantakanen S. Effects of pH regulators used as additives on the bioavailability of ibuprofen from hard gelatin capsules. Eur J Drug Metab Pharmacokinet. 1991;Spec No 3:221-7

2. Altered effective permeability

- Damage to intestinal surface/ tight junction modulation
- Inhibition of efflux
- Inhibition or enhancement of active uptake
• SLS can increase 5- to 6-fold the bioavailability of alendronate (based on urine data)
• SLS is able to break the intestinal membrane to enhance drug absorption
• Data from Caco-2:
 • sodium SLS impacts monolayer integrity.
 • SLS moderately increased the permeability of almost all the drugs
 • disruption of Caco-2 cell monolayer integrity by SLS at 0.1 mg/ml and higher.
3. Transit and luminal volumes

- Faster gastric emptying
- Increased luminal volume (osmotic effect)
- Altered small intestinal transit time
Sorbitol – transit and luminal volume

- Human data
- Ranitidine and metoprolol
- 5, 2.5, or 1.25 g of sorbitol
- Ranitidine: ↓ PK parameters (Cmax and AUC0-infinity) by approximately 50% and 45%, respectively, in the presence of sorbitol versus sucrose
- Sorbitol decreased the systemic exposure of ranitidine in a dose-dependent manner and affected bioequivalence at a level of ≥ 1.25 g
- Metoprolol: ↓ Cmax by 23% but had no significant effect on AUC0-infinity.

- Possible mechanisms: increased GI fluid volume from the osmotic pressure of sorbitol, GI motility enhancement

Mannitol - transit

In vivo, Dual isotope gamma scintigraphy (radiolabeled tablets)

• ↓ Small intestinal transit (SIT) times for mannitol (2.264 g/200 ml) by 34% vs. control solution (purified water = 240 min vs. mannitol = 158 min)

In vivo study with cimetidine

• Statistically significant ↓ in the AUC0-24 and Cmax values vs. sucrose controls.
• Mean SIT times were shortened after administration of the mannitol solution and tablet;

4. Altered metabolism

- Inhibition of gut wall metabolism
Excipients able to interact with metabolic mechanisms

3 different mechanisms:

• direct inhibition (chemical)
• regulation of mRNA expression (reduced or increased)
• regulation of protein expression (reduced or increased)

(mostly surfactants)

Excipients able to interact with metabolic mechanisms

Examples

<table>
<thead>
<tr>
<th>Target</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP 3A inhibition</td>
<td>Kolliphor® HS15, Kolliphor® EL Tween-20®, Tween-80®, PEG400, Myrj® 52 Poloxamer 188 and Poloxamer 235</td>
</tr>
<tr>
<td>CYP3A4 inhibition</td>
<td>Kolliphor EL, Kolliphor RH40, vitamin E TPGS, Tween-80, Poloxamer 188, Myrj 52, Brij® 35, thiomers, modified cyclodextrins and sucrose laurate</td>
</tr>
<tr>
<td>CYP3A5 inhibition</td>
<td>EG1000, Tween-20, cetyltrimethylammonium bromide, Tween-80 and Poloxamer 188</td>
</tr>
<tr>
<td>CYP2C9 inhibition</td>
<td>Kolliphor EL, Kolliphor RH40, Myrj 52, Tween-80, sucrose laurate. Vitamin E TPGS, PEG1000 and Poloxamer 188</td>
</tr>
<tr>
<td>Glucuronidation</td>
<td>Parabens (methyl and propyl) Surfactants (Tween-20 > Kolliphor EL > Kolliphor RH >PEG400 > Tween-80 > Kolliphor H15)</td>
</tr>
</tbody>
</table>
How can excipients impact absorption?

Release rate/amount of drug in solution
- Altered disintegration time
- Altered dissolution rate
- Altered local pH
- Complexation (excipient-drug complexes)

Transit and luminal volumes
- Faster gastric emptying
- Increased luminal volume (osmotic effect)
- Altered small intestinal transit time

Altered effective permeability
- Damage to intestinal surface/ tight junction modulation
- Inhibition of efflux
- Inhibition or enhancement of active uptake

Altered metabolism
- Inhibition of gut wall metabolism
BCS for excipients?

Key scientific messages

- **Some** excipients may have an impact in absorption
- There are **multiple mechanisms** involved
- Only a **limited number** of these **would be relevant** for highly soluble drugs (BCS class I and III) – and as such potentially relevant for BCS based biowaivers
- **Most** excipients used in solid oral immediate release dosage forms **do not influence absorption**
- For BCS class I drugs, absorption is unlikely to be affected by excipients
- For BCS Class III a limited number of mechanisms could be relevant
 - Example: impact on transit time, impact on permeability
Regulatory setting
Excipients: FDA

BCS 1:
• the product does not contain any excipients that will affect the rate or extent of absorption of the drug
• the quantity of excipients in the IR drug product should be consistent with the intended function

BCS 3:
• Test drug product must contain the same excipients as the reference product. Composition: must be qualitatively the same (except for a different color, flavor, or preservative that could not affect the BA) and should be quantitatively very similar to the reference product.
 Filler (± 10%)
 Disintegrant, Starch (± 6%)
 Disintegrant, Other (± 2%)
 Binder (± 1%)
 Lubricant, Calcium or Magnesium Stearate (± 0.5%)
 Lubricant, Other (± 2%)
 Glidant, Talc (± 2%)
 Glidant, Other (± 0.2%)
 Film Coat (± 2%)
 The total additive effect of all excipient changes should not be more than 10 percent.
well-established excipients in usual amounts
possible interactions affecting drug bioavailability and/or solubility characteristics should be considered and discussed

BCS Class I
• Impact rather unlikely but cannot be completely excluded
• Advisable to use similar amounts of the same excipients

BCS Class III
• excipients have to be qualitatively the same and quantitatively very similar
What difference is needed so that similarity can no longer be accepted?
Excipients that might affect bioavailability (e.g. sorbitol, mannitol, sodium lauryl sulfate or other surfactants) should be identified as well as their possible impact on

- gastrointestinal motility
- susceptibility of interactions with the drug substance (e.g. complexation)
- drug permeability
- interaction with membrane transporters

Excipients that might affect bioavailability should be qualitatively and quantitatively the same in the test product and the reference product.
Excipient differences: assessed for **potential to affect** *in vivo* absorption

Justify that proposed differences will not affect absorption

Consider possible effects of excipients on aspects of *in vivo* absorption such as solubility, gastrointestinal motility, transit time and intestinal permeability including transporter mechanisms

Excipients that may affect absorption include sugar-alcohols, e.g., mannitol, sorbitol, and surfactants, e.g., sodium lauryl sulfate
ICH M9: Risk assessment

Mechanistical considerations for impact:

- the amount of excipient used,
- the mechanism by which the excipient may affect absorption,
- absorption properties (rate, extent and mechanism of absorption) of the drug substance.
ICH M9 BCS Class I

• Qualitative and quantitative differences in excipients are permitted,
• Except for excipients that may affect absorption, which should be qualitatively the same and quantitatively similar.

Similar = within ± 10.0% of the amount of excipient in the reference product.
Figure 1. BCS Class I Drug Substances

Are there excipients in the formulation with known or suspected effects on drug absorption?

- YES
 - Are excipients which may affect absorption within ±10% of the amount of the excipient in the reference product?
 - YES
 - Biowaiver possible, provided that dissolution similarity is demonstrated between the test and reference formulations.
 - NO
 - Biowaiver cannot be granted.

- NO
ICH M9 BCS Class III

- Greater number of mechanisms through which excipients can affect absorption
- All of the excipients should be qualitatively the same and quantitatively similar
- (except for film coating or capsule shell excipients)
Allowable differences in excipients for drug products containing BCS Class III drugs

<table>
<thead>
<tr>
<th>Excipient class</th>
<th>Percent of the amount of excipient in the reference</th>
<th>Percent difference relative to core weight (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excipients which may affect absorption:</td>
<td></td>
<td>± 10.0%</td>
</tr>
<tr>
<td>All excipients:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filler</td>
<td></td>
<td>± 10.0%</td>
</tr>
<tr>
<td>Disintegrant</td>
<td></td>
<td>± 6.0%</td>
</tr>
<tr>
<td>Starch</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binder</td>
<td></td>
<td>± 1.0%</td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca or Mg stearate</td>
<td></td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Glidant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talc</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>± 0.2%</td>
</tr>
<tr>
<td>Total % change permitted:</td>
<td></td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Note: Core does not include tablet film coat or capsule shell

Active substance assay
±5%

SUPAC Post-approval (different objective)
Flow chart for BCS Class III

Figure 2. BCS Class III Drug Substances

- Are there excipients in the formulation with known or suspected effects on drug absorption?
 - NO
 - YES

 - Are excipients which may affect absorption within ±10% of the amount of the excipient in the reference product?
 - YES
 - NO

 - Are all excipients qualitatively the same and quantitatively similar?
 - YES
 - NO

 Biowaiver possible, provided that dissolution similarity is demonstrated between the test and reference formulations.

 Biowaiver cannot be granted.
Why is this an issue for generics?

1. Qualitative composition known
2. Quantitative composition?
3. Ranges of use of excipients
4. Patents
5. Reverse engineering (experimental methods with variability and limitations)

Quantitative composition

• Public databases (not available from most highly regulated countries)
• Considered to be confidential information in most regions
• Alternative?
“This doesn’t exactly fill me with confidence, I must admit.”

• The other selected cimetidine capsule formulation for clinical study 2 was denoted CimTest-B and contained 20 mg of magnesium stearate, a reduced amount compared with the 40 mg of magnesium stearate in AcyTest-3 from study 1B.

• Magnesium stearate is known to slow dissolution and possibly reduce drug absorption via overlubrication.

• One main observation is that magnesium stearate in CimTest-B did not modulate drug absorption. Hence, Table 8 denotes acceptable quantities of magnesium stearate for BCS class 3 biowaivers to be 40 mg (from dosing two capsules here) or less.
<table>
<thead>
<tr>
<th>Excipient</th>
<th>Recommended Maximum Allowable Amount for a Class 3 Bio waiver (mg)</th>
<th>Maximum Exipient Amount Studied Here (mg)</th>
<th>Typical Exipient Amount (when present) in an IR Tablet or Capsule With a Total Weight of 300 mg</th>
<th>Maximum Amount (mg) in Inactive Ingredient Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcrystalline cellulose</td>
<td>Qualitatively the same and quantitatively very similar to reference product</td>
<td>600<sup>b</sup></td>
<td>100 mg (20%-90%)</td>
<td>1385.3<sup>c</sup></td>
</tr>
<tr>
<td>Hydroxypropyl methylcellulose</td>
<td>Qualitatively the same and quantitatively very similar to reference product</td>
<td>40<sup>b</sup></td>
<td>10 mg (2%-5%)</td>
<td>444.4<sup>e</sup></td>
</tr>
<tr>
<td>Sodium lauryl sulfate</td>
<td>50</td>
<td>50<sup>b,d</sup></td>
<td>4.5 mg (0.5%-2.5%)</td>
<td>51.69<sup>e</sup></td>
</tr>
<tr>
<td>Corn starch</td>
<td>900</td>
<td>150 mg (25%-75%)</td>
<td>876<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>200</td>
<td>12 mg (4%)</td>
<td>100<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Colloidal silicon dioxide</td>
<td>40</td>
<td>1.5 mg (0.1%-1%)</td>
<td>100<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Dibasic calcium phosphate</td>
<td>600</td>
<td>150 mg (25%-75%)</td>
<td>635.5<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Crospovidone</td>
<td>100</td>
<td>10 mg (2%-5%)</td>
<td>340<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td>900</td>
<td>240 mg (80%)</td>
<td>1020<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Povidone</td>
<td>70</td>
<td>7.5 mg (0.5%-5%)</td>
<td>240<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Stearic acid</td>
<td>80</td>
<td>6 mg (1%-3%)</td>
<td>72<sup>j</sup></td>
<td></td>
</tr>
<tr>
<td>Pregelatinized starch</td>
<td>200</td>
<td>150 mg (5%-75%)</td>
<td>435.8<sup>j</sup></td>
<td></td>
</tr>
<tr>
<td>Croscarmellose sodium</td>
<td>120</td>
<td>37.5 mg (0.5%-25%)</td>
<td>180<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>40</td>
<td>7.5 mg (0.25%-5%)</td>
<td>400.74<sup>e</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a Reflects that two capsules of either cimetidine 100 mg or acyclovir 100 mg were administered in single-dose studies here.
^b Employed in dosing of capsule formulation CimTest-A in study 2.
^c Employed in dosing of capsule formulation CimTest-2 in study 1A.
^d Employed in dosing of capsule formulation CimTest-3 of study 1A.
^e Employed in dosing of capsule formulation AcyTest-2 of study 1B.
^f Employed in dosing of capsule formulation CimTest-B of study 2.
^g Oral tablet.
^h Oral capsule.
ⁱ Oral granule.
^j Oral dispersible tablet.
^k Oral tablet film coated.
^l 72 mg from oral table and 180 mg from extended-release table.
Allowable differences in excipients for drug products containing BCS Class III drugs

<table>
<thead>
<tr>
<th>Excipient class</th>
<th>Percent of the amount of excipient in the reference</th>
<th>Percent difference relative to core weight (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excipients which may affect absorption:</td>
<td></td>
<td>± 10.0%</td>
</tr>
<tr>
<td>All excipients:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filler</td>
<td></td>
<td>± 10.0%</td>
</tr>
<tr>
<td>Disintegrant</td>
<td></td>
<td>± 6.0%</td>
</tr>
<tr>
<td>Starch</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>± 1.0%</td>
</tr>
<tr>
<td>Binder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Ca or Mg stearate</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>± 0.2%</td>
</tr>
<tr>
<td>Glidant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talc</td>
<td></td>
<td>± 2.0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total % change permitted: 10.0%

Note: Core does not include tablet film coat or capsule shell

Active substance assay ±5%

SUPAC
Post-approval (different objective)
Example in practice

Reverse engineering: 3 months

Bioequivalence study: 2-6 months

Risk that change is not within limits [e.g. Excipients 0.2%]
• What is the feasibility for BCS Class III?
Are excipients important?

- They may be!

- Accepted ranges: SUPAC was developed with a different intent
- Reverse engineering is based on experimental data (variability)
- (Assay of API ±5%)
- Feasibility to guesstimate at ≤2% (0.2%, 0.5%, 1%, 2%...)

medicines for europe
better access. better health.
ICH M9 on Biopharmaceutics Classification System Based Biowaivers

Current version: Draft guideline

For public consultation

<table>
<thead>
<tr>
<th>Reference number</th>
<th>EMA/CHMP/ICH/493213/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published</td>
<td>06/08/2018</td>
</tr>
<tr>
<td>Start of consultation</td>
<td>06/08/2018</td>
</tr>
<tr>
<td>End of consultation</td>
<td>06/02/2019</td>
</tr>
<tr>
<td>Keywords</td>
<td>Bioequivalence study exemptions, solubility, permeability, in vitro dissolution</td>
</tr>
</tbody>
</table>

Description

This new multidisciplinary guideline is proposed to address biopharmaceutics classification system (BCS)-based biowaivers. BCS-based biowaivers may be applicable to BCS Class I and III drugs, however BCS-based biowaivers for these two classes are not recognized worldwide. This means that pharmaceutical companies have to follow different approaches in the different regions. This guideline will provide recommendations to support the biopharmaceutics classification of medicinal products and will provide recommendations to support the waiver of bioequivalence studies. This will result in the harmonisation of current regional guidelines/guidance and support streamlined global drug development.
Why you should participate in the public consultation?

• Now is the time to provide comments!
• Especially helpful if supported by data / case studies
• EWG to analyze comments before coming to the final version of the guideline
Acknowledgements

- Dr. Talia Flanagan, AssociatePrincipal Scientist Biopharmaceutics, AstraZeneca UK and the ICH M9 Expert Working Group
- Dr. Jiri Hofmann, Clinical Development Manager, ZENTIVA, k.s.